
CS 4530: Fundamentals of Software Engineering

Lesson 6.2 Introduction to React

1

© 2022 Released under the CC BY-SA license

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals

By the end of this lesson, you should…
• Be able to explain how component reuse simplifies

application development
• Understand how the React framework binds data (and

changes to it) to a UI

HTML: The Markup Language of the Web

• Language for describing structure
of a document

• Denotes hierarchy of elements

• What might be elements in this
document?

Rich, interactive web apps
Infinite scrolling of cats

Typical properties of web app Uis
Building abstractions for web app development?

• Each widget has both visual presentation &
logic

• e.g., clicking on like button executes some logic
related to the containing widget

• Logic and presentation of individual widget
strongly related, loosely related to other widgets

• Some widgets occur more than once
• e.g., comment/like widgets

• Changes to data should cause changes to
widget

• e.g., new images, new comments should show
up in real time

Key Idea: Components

• Web pages are complex, with lots of
logic and presentation

• How can we organize web page to
maximize modularity?

• Solution: Components - Easy to repeat,
cohesive pieces of code (hopefully with
low coupling)

Components

• Organize related logic and presentation
into a single unit

• Includes necessary state and the logic for
updating this state

• Includes presentation for rendering this
state into HTML

• Synchronizes state and visual
presentation

• Whenever state changes, HTML should be
rendered again

Components
Example: Like button component

• What does the button keep track of?
• Is it liked or not
• What post this is associated with

• What logic does the button have?
• When changing like status, send update to

server

• How does the button look?
• Filled in if liked, hollow if not

Server side vs. client side

• Where should template/component be instantiated?

• Server-side frameworks: Template instantiated on server
• Examples: JSP, ColdFusion, PHP, ASP.NET
• Logic executes on server, generating HTML that is served to browser

• Front-end framework: Template runs in web browser
• Examples: React, Angular, Meteor, Ember, Aurelia, …
• Server passes template to browser; browser generates HTML on demand

Expressing Logic

• Templates/components require combining logic with HTML
• Conditionals - only display presentation if some expression is true
• Loops - repeat this template once for every item in collection

• How should this be expressed?
• Embed code in HTML (ColdFusion, JSP, Angular)
• Embed HTML in code (React)

Embedding Code in HTML

• Template takes the form of an
HTML file, with extensions

• Popular for server-side
frameworks

• Uses another language (e.g.,
Java, C) or custom language to
express logic

• Found in frameworks such as
PHP, Angular, ColdFusion, ASP
(NOT react)

• Can’t type check anything

Embedding HTML in TypeScript
Aka JSX or TSX

• How do you embed HTML in
TypeScript and get syntax checking?

• Idea: extend the language: JSX, TSX
• JavaScript (or TypeScript) language,

with additional feature that
expressions may be HTML

• It’s a new language
• Browsers do not natively run JSX (or

TypeScript)
• We use build tools that compile

everything into JavaScript

React: Front End Framework for Components

• Created by Facebook
• Powerful abstractions for describing frontend UI components
• Official documentation & tutorials: https://reactjs.org/
• Key concepts:

• Embed HTML in TypeScript
• Track application “state”
• Automatically and efficiently re-render page in browser based on

changes to state

Rich, interactive web apps
Infinite scrolling of cats

Built with React

Plus, AirBNB, Uber, Pinterest,
Netflix, Twitter and 8855 more

React Evolution
From classes to functional components

• Hooks were added to functional components in React 16.8.
• Recommended using functional components instead of class

components.
• Will have more features added.
• Neither approach is wrong.

Embedding HTML in TypeScript

• HTML embedded in TypeScript
• HTML can be used as an expression
• HTML is checked for correct syntax

• Can use { expr } to evaluate an expression and return a value
• e.g., { 5 + 2 }, { foo() }

• Output of expression is HTML

return <div>Hello {name}</div>;

Example Component

“Declare a Hello
component”
Declares a new component to
which state and other
functionality can be added.

“Return the following
HTML whenever the
component is rendered”

The HTML is dynamically
generated by the library.

Properties vs. State

• Properties should be immutable.
• Created through attributes when component is instantiated.
• Should never update within component
• Parent may create a new instance of component with new properties

• State changes to reflect the current state of the component.
• Can (and should) change based on the current internal data of your

component.

Components
Example: Like button component

• What does the button keep track of?
• Is it liked or not (state)
• What post this is associated with

(property)

What is state?

• All internal component data that, when changed,
should trigger UI update

• Stored as state variables in the component
• Created using useState(defaultValue)
• E.g. let [state, setState] = useState({});

• Only can set directly before a component is created (in
useState()). Otherwise must call setState()

• Import useState from react

Reacting to change
How does the page update automatically?

• Your code updates the state of component when event(s)
occur (e.g., user enters data, get data from network)

• Updating state causes the html to be re-rendered by the
framework (must call setter, not update variable directly)

• Reconciliation: Framework diffs the previously rendered
DOM with the new DOM, updating only part of DOM that
changed

Working with state

• useState() should initialize state of object inside component

• Use setState to update state (setDate in example)

• Doing this will (asynchronously) eventually result in render being invoked
• Multiple state updates can be automatically batched together and result in

a single render call

Nesting components
return (

<div>
<LikeButton post={post} />
<CommentButton post={post} />

</div>
);

Establishes ownership by creating in
returned template

Sets post property of child to value
of post property of parent

The data flows down

• State that is common to multiple components should be owned by a
common ancestor

• State can be passed into descendants as properties

• When this state can be manipulated by descendants (e.g., a control),
change events should invoke a handler on common ancestor

• Handler function should be passed to descendants

The data flows down

Component Lifecycle

• Traditionally, the React Component Lifecycle consists of 3 phases
• Mounting: When a component first loads

• componentDidMount()
• Updating: When the component is updated

• componentDidUpdate()
• Unmounting: When the component is about to be removed

• componentWillUnmount()

• In functional components, these are replaced by hooks.
• Specifically, the useEffect() hook, imported from react

Working with Hooks
Self incrementing timer

Working with Hooks
Self incrementing timer

Reconciliation
Efficiently updating browser’s view of the app

• Process by which React updates the DOM with each new
render pass

• Occurs based on order of components
• Second child of Card is destroyed.
• First child of Card has text mutated.

Reconciliation with Keys

• Problem: what if children are dynamically generated and have their
own state that must be persisted across render passes?

• Don’t want children to be randomly transformed into other child with
different state

• Solution: give children identity using keys
• Children with keys will always keep identity, as updates will reorder them or

destroy them if gone

Reconciliation with Keys

Summary - React

• Component-based framework

• Automatically re-render components based on
changes to data

• Maps each component to some HTML elements and
efficiently updates them

	CS 4530: Fundamentals of Software Engineering��Lesson 6.2 Introduction to React
	Learning Goals
	HTML: The Markup Language of the Web
	Rich, interactive web apps
	Typical properties of web app Uis�Building abstractions for web app development?
	Key Idea: Components
	Components
	Components�Example: Like button component
	Server side vs. client side
	Expressing Logic
	Embedding Code in HTML
	Embedding HTML in TypeScript�Aka JSX or TSX
	React: Front End Framework for Components
	Rich, interactive web apps�Infinite scrolling of cats
	React Evolution�From classes to functional components
	Embedding HTML in TypeScript
	Example Component
	Properties vs. State
	Components�Example: Like button component
	What is state?
	Reacting to change�How does the page update automatically?
	Working with state
	Nesting components
	The data flows down
	The data flows down
	Component Lifecycle
	Working with Hooks�Self incrementing timer
	Working with Hooks�Self incrementing timer
	Reconciliation�Efficiently updating browser’s view of the app
	Reconciliation with Keys
	Reconciliation with Keys
	Summary - React

