CS 4530: Fundamentals of Software Engineering

Lesson 6.2 Introduction to React

Jonathan Bell, Adeel Bhutta, Ferdinand Vesely, Mitch Wand
Khoury College of Computer Sciences

© 2022 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals

By the end of this lesson, you should...

* Be able to explain how component reuse simplifies
application development

* Understand how the React framework binds data (and
changes to it) to a Ul

HTML: The Markup Language of the Web

Read moreon Digitst economy or bust
MediaGuardian.couk

==

* Language for describing structure | Vevo revolutionary
B b ke Tt oy [
g_
of a document
1

* Denotes hierarchy of elements

L access: it
alable
he music

try; the question
v do you do that
1 make money?

* What might be elements in this
document?

Rich, interactive web apps

Infinite scrolling of cats

eee <> DN O & facebook.com < (N ol B=N
A¥ES UEN -5 S =5 A% |
£ 1 a PP s = +e005s -
00 s
o) Like (J Comment 2 Share
ﬁl Write a comment... [ONG)] @
Dhennya Campos ..
September 14 at 5:56 AM - &

—

Andrea Gutierres
September 9 at 1:17 PM - @

Fago o que quero, onde quero humano &

Crédito .~ @grarcia C’J
Display a menu @amadosfelinos

Typical properties of web app Uis

Building abstractions for web app development?

f8%) bowiespacecat

* Each widget has both visual presentation &
logic
* e.g., clicking on like button executes some logic
related to the containing widget

* Logic and presentation of individual widget
strongly related, loosely related to other widgets

 Some widgets occur more than once
* e.g.,, comment/like widgets

* Changes to data should cause changes to
widget

. ©OQY W
e e.g., new images, new comments should show

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the

up in real time e~

Key Idea: Components

* Web pages are complex, with lots of
logic and presentation

* How can we organize web page to
maximize modularity?

* Solution: Components - Easy to repeat,
cohesive pieces of code (hopefully with
low coupling)

f88y bowiespacecat

O Qv N

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &

Components

* Organize related logic and presentation
into a single unit

* Includes necessary state and the logic for
updating this state

* Includes presentation for rendering this
state into HTML

e Synchronizes state and visual
presentation

* Whenever state changes, HTML should be
rendered again

f88y bowiespacecat

O Qv N

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &

Components
Example: Like button component

* What does the button keep track of?

* |s it liked or not
* What post this is associated with

* What logic does the button have?

* When changing like status, send update to
server

* How does the button look?
* Filled in if liked, hollow if not

f88y bowiespacecat

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &

Server side vs. client side

* Where should template/component be instantiated?

e Server-side frameworks: Template instantiated on server
* Examples: JSP, ColdFusion, PHP, ASP.NET
* Logic executes on server, generating HTML that is served to browser

* Front-end framework: Template runs in web browser

* Examples: React, Angular, Meteor, Ember, Aurelia, ...
e Server passes template to browser; browser generates HTML on demand

Expressing Logic

* Templates/components require combining logic with HTML
* Conditionals - only display presentation if some expression is true
* Loops - repeat this template once for every item in collection

* How should this be expressed?

* Embed code in HTML (ColdFusion, JSP, Angular)
* Embed HTML in code (React)

Embedding Code in HTML

 Template takes the form of an s

. . . <head><title>First JSP</title»</head>
HTML file, with extensions o
. A
¢ Popular for server-side double num = Math.random();
framEWOFkS g,;}l{ {(num > 8.55) {
h2>You'll have a luck day!</h2>» A= num % /
* Uses another language (e.g., o Y s el Ul
Java, C) or custom language to |} else !
express |OgIC <h2>Well, life goes on ... </h2><p>(<%= num %>)</p>
* Found in frameworks such as “
PHP, Angular, ColdFusion, ASP =
(NOT react)

e Can’t type check anything

Embedding HTML in TypeScript

Aka JSX or TSX
* How do you embed HTML in export function HelloMessage(props: IProps) {
TypeScript and get syntax checking? n (
< >
Hello, {props.name}
* |dea: extend the language: JSX, TSX) >
 JavaScript (or TypeScript) language,
with additional fzature t?\ }
expressions may be HTML
ReactDOM. render(
* |t’S d hew language <HelloMessage name='Satya’ />
* Browsers do not natively run JSX (or </R trictModes,
TypeScrlpt) document getElementById(root')

* We use build tools that compile);
everything into JavaScript

React: Front End Framework for Components

* Created by Facebook
* Powerful abstractions for describing frontend Ul components

* Official documentation & tutorials: https://reactjs.org/

* Key concepts:
* Embed HTML in TypeScript
* Track application “state”

* Automatically and efficiently re-render page in browser based on
changes to state

Rich, interactive web apps
Infinite scrolling of cats

e < ° m O @ facebook.com

0 - a P s

[E4
=}
I

oL e® < | m O @ instagram.com ¢ o t (=]

Q)
+ o & - Jnstagnam a search A v ® O b

m .

@’ tofuminou
o Like (J comment £/ Share

ﬂ Write a commen

igBuilt with Reac

Plus, AirBNB, Uber, Pinterest,
Netflix, Twitter and 8855 more

I T OO

tofuminou @ragdolls_roosevelt_n_percival & Thanks! @/

Andrea Gutierres tofuminou @toffeeandfudgemeow & Thank you! % <

September 9 at 1:17 PM - @ 2DAYSAGO

Fago o que quero, onde quero humano

E = Add a comment...
i . @

Crédito @grarcia

Display a menu @amadosfelinos Display a menu

React Evolution

From classes to functional components

HelloMessage React.Component {
render() {
< > Hello, World! </ >

HelloMessage() {
< > Hello, World! </ >

}

}

* Hooks were added to functional components in React 16.8.

* Recommended using functional components instead of class
components.

* Will have more features added.
* Neither approach is wrong.

Embedding HTML in TypeScript

return <div>Hello {name}</div>;

* HTML embedded in TypeScript
e HTML can be used as an expression
* HTML is checked for correct syntax

e Can use { expr } to evaluate an expression and return a value
e e.g.,{5+2} {foo()}

e Qutput of expression is HTML

Example Component

HelloMessage() {
< > Hello, World! </ >

“Return the following
HTML whenever the
component is rendered”

“Declare a Hello
component”

Declares a new component to
The HTML is dynamically which state and other
generated by the library. functionality can be added.

Properties vs. State

* Properties should be immutable.
* Created through attributes when component is instantiated.
* Should never update within component
* Parent may create a new instance of component with new properties

HelloMessage(props: IProps) {
(<div> Hello, {props.name} </div>); ielloMessage name='Satya’ />

 State changes to reflect the current state of the component.

* Can (and should) change based on the current internal data of your
component.

Components
Example: Like button component

* What does the button keep track of?

* |s it liked or not (state)
* What post this is associated with
(property)

(state.islLiked){

onClick={togglelLike} />

onClick={togglelLike} />

f88y bowiespacecat

220 likes

bowiespacecat Sometimes | wonder how Bowie doesn’t get cramps from sleeping the
way he does &d

What is state?

* All internal component data that, when changed,
should trigger Ul update

* Stored as state variables in the component

* Created using useState(defaultValue)
* E.g. let [state, setState] = useState({});

* Only can set directly before a component is created (in
useState()). Otherwise must call setState()

* Import useState from react

{ useState }

Reacting to change
How does the page update automatically?

* Your code updates the state of component when event(s)
occur (e.g., user enters data, get data from network)

* Updating state causes the html to be re-rendered by the
framework (must call setter, not update variable directly)

* Reconciliation: Framework diffs the previously rendered
DOM with the new DOM, updating only part of DOM that

changed

Working with state

 useState() should initialize state of object inside component

[date, setDate] = useState(());

e Use setState to update state (setDate in example)

setDate(new Date());

* Doing this will (asynchronously) eventually result in render being invoked

* Multiple state updates can be automatically batched together and result in
a single render call

Nesting components

return (
<div>
<LikeButton post={post} />
<CommentButton post={post} />
</div>

)5

Establishes ownership by creating in Sets post property of child to value
returned template of post property of parent

The data flows down

e State that is common to multiple components should be owned by a
common ancestor

 State can be passed into descendants as properties

* When this state can be manipulated by descendants (e.g., a control),
change events should invoke a handler on common ancestor

* Handler function should be passed to descendants

The data flows down

Count
ounter() { Display(props: any) {

[count, setCount] = useState(9); (
>Count: {props.count}</hl>

incrementCount() {
setCount(count 1);

Button(props: any) {

count={count} /> onClick={props.incrementCount}>
incrementCount={incrementCount} /> Increment Count
</ >

Component Lifecycle

* Traditionally, the React Component Lifecycle consists of 3 phases

* Mounting: When a component first loads
e componentDidMount()

* Updating: When the component is updated
* componentDidUpdate()

* Unmounting: When the component is about to be removed
* componentWillUnmount()

* |In functional components, these are replaced by hooks.
» Specifically, the useEffect() hook, imported from react

{ useEffect } 'react’;

Working with Hooks

Self incrementing timer
Timer() {
[seconds, setSeconds] useState(9);

tick() {
setSeconds((nrSeconds) nrSeconds + 1);

}

Seconds: {seconds}
</ >

)s

Working with Hooks

Self incrementing timer

useEffect(() {

interval: NodelS.Timeout setInterval(tick, 1000);
rn () {

clearInterval(interval as NodelS.Timeout);

}
s [1)s

useEffect(() => {

console.log(seconds);
}, [seconds]);

Reconciliation
Efficiently updating browser’s view of the app

< > <Card>
<p> Paragraph 1 </p> <p> Paragraph 2 </p>
Card>

<p> Paragraph 2 </p>
</ >

* Process by which React updates the DOM with each new
render pass

* Occurs based on order of components
* Second child of Card is destroyed.
* First child of Card has text mutated.

Reconciliation with Keys

* Problem: what if children are dynamically generated and have their
own state that must be persisted across render passes?

* Don’t want children to be randomly transformed into other child with
different state

 Solution: give children identity using keys

* Children with keys will always keep identity, as updates will reorder them or
destroy them if gone

Reconciliation with Keys

NumberList(props: any) {
numbers props.numbers;
listItems = numbers.map((number: any)
key={number.toString()}>
{number}
</1i>
)s
(
{listItems}

)s
}

numbers [1, 2, 3, 4, 5];
ReactDOM. render(
< numbers={numbers} />,
document.getElementById('root")

);

Summary - React

e Component-based framework

* Automatically re-render components based on
changes to data

* Maps each component to some HTML elements and
efficiently updates them

	CS 4530: Fundamentals of Software Engineering��Lesson 6.2 Introduction to React
	Learning Goals
	HTML: The Markup Language of the Web
	Rich, interactive web apps
	Typical properties of web app Uis�Building abstractions for web app development?
	Key Idea: Components
	Components
	Components�Example: Like button component
	Server side vs. client side
	Expressing Logic
	Embedding Code in HTML
	Embedding HTML in TypeScript�Aka JSX or TSX
	React: Front End Framework for Components
	Rich, interactive web apps�Infinite scrolling of cats
	React Evolution�From classes to functional components
	Embedding HTML in TypeScript
	Example Component
	Properties vs. State
	Components�Example: Like button component
	What is state?
	Reacting to change�How does the page update automatically?
	Working with state
	Nesting components
	The data flows down
	The data flows down
	Component Lifecycle
	Working with Hooks�Self incrementing timer
	Working with Hooks�Self incrementing timer
	Reconciliation�Efficiently updating browser’s view of the app
	Reconciliation with Keys
	Reconciliation with Keys
	Summary - React

